Collaboration between Simulated Model and External System: Controlling LEGO Mindstorms with Cameo Simulation Toolkit

Kritsana Uttamang, PhD
kritsana_u@nomagicasia.com

Kampanath Panthithosanyu
kampanath_p@nomagicasia.com

Jirawat Lakomnouyporn
jirawat_l@nomagicasia.com

Wachira Manasmeekul
wachira_m@nomagicasia.com
Abstract: This paper shows the use of opaque behaviors containing JavaScripts to enable the communications between the simulated model of the controller and the external device, which is LEGO Mindstorms configured as ShooterBot. The controller model has been designed with MagicDraw SysML and will be executed by Cameo Simulation Toolkit. During model execution, the mock-up panel which is designed with the MagicDraw User Interface Modeling diagram, will open. It provides interface to the user for controlling LEGO Mindstorms to move forward and backward, turn left and right, and fire balls.

Keywords: fUML, CAMEO Simulation Toolkit, LEGO Mindstorms, Model-Driven Simulation, LeJOS NXJ Library.

1. Introduction

1.1 Overview

Model-driven simulation currently receives much attention from research communities and industries. It can help system engineers gain more understanding about the designed system without manipulating the real system, which may be due to the fact that it is not yet defined or available, or it cannot be exercised directly owing to cost, time, resources, or risk constraints.

Cameo Simulation Toolkit is the extension of MagicDraw which provides an extendable model execution framework based on OMG fUML [1] and W3C SCXML standards. It extends MagicDraw to validate system behavior by executing, animating, and debugging UML state-machine and activity models in the context of realistic mock-ups of the intended user interface.

The opaque behavior is one of the UML elements that can be executed by Cameo Simulation Toolkit. When the Cameo Simulation Toolkit executes the opaque behavior, the script contained in the opaque behavior will be executed if it is written in any languages supported by JSR-223 (Scripting for the Java Platform). This ability can be used to enable communications between the simulated model and external system. It can be applied to create a system operated by the collaboration between the simulated model and the external devices. For example, in the controller's system, the controller which is modeled with MagicDraw SysML can control the external devices through Cameo Simulation Toolkit. LEGO Mindstorms is the external device that we are interested in.

LEG0 Mindstorms contains software and hardware to create a customizable and programmable robot. LEGO Mindstorms NXT 2.0 is the version deployed in this project. This version contains 3 motors, 1 Ultrasonic sensor, 1 LED and light sensor, 2 touch sensors, and 1 brick processing unit. However, touch sensors are not used in this project.

1.2 Objective

In this work, the model of LEGO Mindstorms and its controller will be created with MagicDraw SysML, whereas Cameo Simulation Toolkit will be used to execute the designed model. The control signals, including moving forward and backward, turning left and right, and firing balls, will be sent out to control the real LEGO Mindstorms using opaque behaviors which contain JavaScript.

Figure 1 – LEGO Mindstorms
2. System Requirements

MagicDraw UML v17.0.2 with SysML plugin v17.0.2 and Cameo Simulation Toolkit v17.0.2 are the tools used for designing and simulating the models of both the controller and the LEGO Mindstorms on Microsoft Windows XP. The simulated model will send out control signals to control the real LEGO Mindstorms device through Bluetooth and USB cable.

2.1 LEGO Mindstorms

In this work, we use the LEGO Mindstorms NXT 2.0. It will be configured using a simple pattern called “Shooterbot,” a simple mobile robot with a ball shooter and ultrasonic and color sensors as shown in Figure 1. The building instruction can be found in the LEGO Mindstorms NXT User Guide [2].

2.2 leJOS NXJ Library

From [3], leJOS NXJ Library is a Java programming environment for the LEGO Mindstorms. It allows the user to program LEGO Mindstorms in Java. leJOS NXJ library provides API for controlling the robots and also provides a replacement firmware that includes a Java Virtual Machine for the LEGO Mindstorms. Therefore, the original firmware must be replaced with it. The version of leJOS NXJ Library used in this work is 0.9.1 for Microsoft Windows platform. leJOS NXJ Library and its information can be found at http://lejos.sourceforge.net/.

2.3 NXT Library Plugin for MagicDraw

NXT Library plugin is a MagicDraw plugin developed in this work. It opens the connection between MagicDraw and LEGO Mindstorms through leJOS NXJ Library. Mainly, it has been created to maintain the NXTConnection object of leJOS NXJ Library. The NXTConnection object must be created to enable the connection between MagicDraw and LEGO Mindstorms. If the NXTConnection object is instantiated within the JavaScript contained in the opaque behavior, it will be destroyed immediately after the opaque behavior has been executed by Cameo Simulation Toolkit v17.0.2. Therefore, the NXTConnection must be initiated in every opaque behavior in such case.

Not only maintaining the NXTConnection object, but the NXT Library Plugin for MagicDraw also provides utility functions which can be easy called by JavaScript contained in the opaque behaviors. These utility functions are:

- LEGO connection function via Bluetooth or USB cable.
- Motor functions for controlling the motor rotator spinning clockwise or counterclockwise.
- LED-light function for turning the specified color of LED on or off.
- Ultrasonic sensor function for detecting the nearest object.
- ShooterBot motion control functions for controlling the robot to move forward and backward and turn left and right. These functions simplify motor functions for controlling ShooterBot to move in the specified directions.

3. System Model

MagicDraw with SysML plugin is the tool that has been selected for modeling the system. The designed system can be separated into four parts: NXT model library, Controller model, ShooterBot model, and the UltrasonicSensor model as shown in Figure 2.
3.1 NXT Model Library

NXT Model Library is a UML model consisting of a set of pre-defined opaque behaviors. These opaque behaviors contain JavaScript calling the Java methods provided by NXT Library plugin for MagicDraw.

They can be reused to model complex activities by creating call behavior actions calling opaque behaviors as shown in Figure 4. SysML Activity diagram represents the opaque behaviors that move the robot forward by using call behavior actions calling setOutputState, which is an opaque behavior containing JavaScript that calls for the NXT Library plugin for MagicDraw.
3.2 Controller Model

The controller is the system for sending control signals to control the ShooterBot. Here, it is represented by the **NXT Controller** block. Its behaviors are defined with state machines and activities of such block. The classifier behavior of the **NXT Controller** block is modeled with SysML state-machine diagram shown in Figure 5. The controller will change its state when it receives a triggered signal indicated on a transition. Each state may have a specified entry and/or exit activity which will be performed by Cameo Simulation Toolkit when the execution enters or exits the state.

![Figure 5 - Controller's State Machine](image)

For example, in Figure 5, if the **Fire** signal is received by the controller when the controller is in **Idle** state, the controller's state will be changed from the **Idle** state to **Sending Fire Signal** state, and the **Send Fire Signal** activity, as the entry activity of the **Sending Fire Signal** state, is executed. The actions which will be performed by the **Send Fire Signal** activity are described by the SysML Activity Diagram shown in Figure 6.
When the **Send Fire Signal** activity is executed, the status of the controller will be changed to “Firing,” and then the **Fire** signal will be sent from controller to ShooterBot.

To create user interface for the controller, we use the MagicDraw user interface diagram. With Cameo Simulation Toolkit, when a signal is dragged to the UI frame element, a button for sending the dragged signal will be created. When the button is clicked, the signal will be sent to the controller and trigger the controller to change the state. Figure 7 shows the user interface of the controller created in this work. The dialog represents the NXT Controller block. It consists of buttons for sending signals specified by the labels on the buttons. The **Status** label represents the value of the **Status** property of the **NXT Controller** block. **Nearest Object** in the **Sensor** group box is the label that represents the value of the **NearestObject** property of **Sensor** of the **NXT Controller** block. This value is the distance between ShooterBot and the nearest object detected by the ultrasonic sensor.

3.3 ShooterBot Model

The ShooterBot model is similar to the controller’s model. The **ShooterBot** block is created to represent ShooterBot. It consists of state machines and activities of ShooterBot. The classifier behavior of the **ShooterBot** block is defined by the **ShooterBot** state machine shown in Figure 8. The **ShooterBot** block is set to be the active block (IsActive = true). Thus, its classifier behavior will be automatically started when the ShooterBot runtime object is created.
During model execution, the runtime object of **ShooterBot** receives control signals sent from the controller. They will trigger the **ShooterBot** runtime object to change the state. Then, the activities specified at the entry and the exit of states will be executed. The executed activities have call behavior actions calling the opaque behaviors defined in NXT library. Thus, the control commands can be sent to control the real ShooterBot.

![State Machine for Movement and the Firing System of ShooterBot](image1)

Figure 8 – State Machine for Movement and the Firing System of ShooterBot

For example, when **ShooterBot** is connected to the controller, it will be in the Idle state. If it receives the **Fire** signal sent from the controller, the **Fire** activity of **ShooterBot**, which is described by SysML Activity Diagram in Figure 9, will be executed. The red LED will be turned on. After that, all motors will stop, and the balls will be fired by spinning the rotator of motor A.

![SysML Activity Diagram for Firing the ShooterBot Action](image2)

Figure 9 – SysML Activity Diagram for Firing the ShooterBot Action
The SysML Activity diagram shown in Figure 8 shows the using of call behavior actions typed by opaque behaviors defined in NXT model library. The JavaScript contained in the opaque behaviors will be executed when the call behavior actions is activated by Cameo Simulation Toolkit.

3.4 Ultrasonic Sensor Model

The ultrasonic sensor model is created for detecting the distance between the ShooterBot and the nearest object. The **UltrasonicSensor** block is created to represent the ultrasonic sensor. It has an **Ultrasonic Sensor** state machine specified as its classifier behavior. The Ultrasonic Sensor state machine is described by SysML State Machine diagram as shown in Figure 10.

![Figure 10 – SysML State Machine Diagram of Ultrasonic Sensor State Machine](image)

In this model, UltrasonicSensor is designed to update the distance between ShooterBot and the detected object every 50 millisecond by calling the UpdateValue activity as indicated in Figure 11.

![Figure 11 – SysML Activity Diagram of the UpdateValue Activity](image)

4. Execution Result

After the model of ShooterBot, UltrasonicSensor, and NXT Controller models have been completed, the execution configuration and the instance specification of the models must be created with specified values. They will be executed with Cameo Simulation Toolkit. To execute the models, their instance specification must be created with the values specified as shown in Figure 12.
For the Execution Configuration element, it will be created with the specified properties values shown in Figure 13. The execution target of the execution configuration is the instance specification of NXT Controller.

The created execution configuration will be selected and executed by Cameo Simulation Toolkit. The mock-up panel, which is designed with the MagicDraw User Interface Modeling diagram, will be displayed as shown in Figure 14.
When the button in the mock-up panel is clicked, the signal associated with the button can be sent out to control ShooterBot. The status of the system and the distance between ShooterBot and the detected object will be shown in the mock-up panel.

5. Conclusion

This work shows the system that is operated by the collaboration between the simulated model in Cameo Simulation Toolkit and external devices represented by LEGO Mindstorms. NXT Model Library has been created as a MagicDraw model library. It has pre-defined opaque behaviors containing JavaScripts calling NXT Library plugin for MagicDraw. leJOS NXJ Library is used to enable communications between the plugin and the real LEGO Mindstorms. The controller's system has been modeled with MagicDraw SysML. It has activities that use call behavior actions calling the opaque behaviors in NXT Model Library, for sending the control signals to LEGO Mindstorms.

In simulation, the simulated model of the controller can be used to control the real LEGO Mindstorms. The mock-up user interface, which is modeled by MagicDraw User Interface Modeling, allows the user to select buttons to control the robot to move forward and backward, turn left and right, and fire the balls.

The concept of using opaque behaviors with specified JavaScripts to enable communication between the simulated model and the external system can be applied to many engineering applications, especially to control applications which the controller modeled can be readily used without need of manipulation of real systems. It can effectively help engineers reduce costs, time, and resources in developing new systems.

6. References

Contact for Services

Please contact us at services@nomagic.com for more detailed information about No Magic services, training courses, scheduling possibilities, or any specific issues of your company.